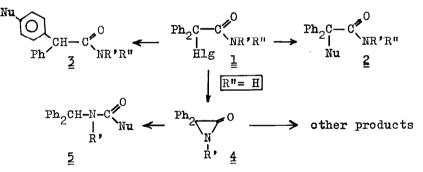
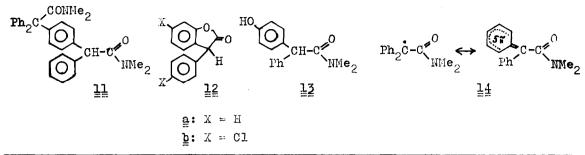
ANOMALOUS SUBSTITUTIONS AND REDUCTIVE DEHALOGENATIONS OF α,α-DIARYL-α-HALOGENO--N.N-DIMETHYLACETAMIDES BY METHOXIDE


Gy. Simig, K. Lempert, J. Tamás (a) and P. Szepesy

Research Group for Alkaloid Chemistry, Hungarian Academy of Sciences, H-1521 Budapest, Hungary; and

(a) Central Research Institute for Chemistry, Hungarian Academy of Sciences
(Received in UK 17 January 1977; accepted for publication 21 February 1977)

 α -HALOGENO- α , α -diphenylacetamides (1) and related compounds are known to


furnish both with simple and ambident nucleophiles (including NaH, NaBH₄, NaNH₂, amines, and <u>N</u>-cyanoamide anions, respectively), in addition to normal products (2) of substitution, <u>p</u>-substituted (2) and several types of further products, <u>e.g.</u> 5, formed through the intermediacy of aziridinones (4).¹⁻⁷

A limited number of reactions of type $\underline{1}$ compounds with alkali hydroxides and alkoxides in alcohols has so far been studied, and normal products ($\underline{2}$) as well as products formed <u>via</u> 4 have been obtained.^{3b,8}

We have reacted the α -halogenoacetamides $\underline{6a}^9$, $\underline{6b}^6$ and $\underline{6c}^{10}$ with 3-5 moles of NaOMe in MeOH or 2,2-dimethoxypropane (DMP) and obtained the products¹¹ shown in the table.

YY		<u>6a</u> ≡≡	₽	UI	<u>7</u> a	₽	CI	đ	8 <u>a</u>	₽	C≣	2	<u>10a</u>	ğ
	X	H	н	Cl	н	Н	Cl	Cl	н	MeO	Cl	MeO	н	Cl
YI NMe	Y	H	H	H	н	H	H	H	OMe	H	OMe	H	H	н
W 2	Z	H	H	Cl	н	H	Cl	Cl	H	H	Cl	Cl	H	Cl
<u>6</u> - <u>10</u>	W	\mathbf{Br}	Cl	Br	OMe	OH	OMe	OH	H	H	H	OMe	H	H

Starting compound	Solvent		Products and yields					
<u>6a</u>	MeOH	5 days at r.t.	33-38% $\underline{7}_{\underline{a}}$, 0,5-3% $\underline{7}_{\underline{b}}$, 43-48% ($\underline{8}_{\underline{a}}+\underline{8}_{\underline{b}}$) ¹²					
<u>6a</u>	DMP	2 hrs at r.t.	12% 7a, 9% 7b, 20% 10a, 24% 11					
<u>6</u> b	MeOH	7 days at r.t.	32-34% <u>7a</u> , 1-4% <u>7b</u> , 51-53% (<u>8a+8b</u>) ¹²					
<u>6</u>	MeOH	Refluxing for 4 hrs	50-58% $\frac{7}{2}$, 12-15% $\frac{8}{2}$, 3-11% $\frac{2}{2}$					
<u>6c</u>	DMP	2 hrs at r.t.	7% <u>7</u> d, 55% 10b					

<u>Ta</u>, mp. 127°C; IR (KBr): 1640, 760, 740, 700/690 cm⁻¹. NMR (CDCl₃): δ 7.45-7.05, m, 10H; 3.3, s, 3H; 2.95, bs, 6H. Authentic sample obtained in 90% yield by refluxing <u>6a</u> with MeOH. - <u>Tb</u>, mp., m.mp. and lit.⁶ mp. 131-2°C. - <u>Tc</u>, mp. 136-7°C; IR (KBr): 1640, 800 cm⁻¹. NMR (CDCl₃): δ 7.42+7.20, A₂B₂, J=9 Hz, 8H; 3.3, s, 3H; 3.0+2.9, two bs's, 6H. MS: <u>m/e</u> 267 (69%, i); 265 (100%, M--CONMe₂); 141 (15%, i); 139 (45%, <u>p</u>-³⁵ClC₆H₄CO); 113 (5.4%, i); 111 (17%, ³⁵ClC₆H₄); 72 (11%, CONMe₂). Authentic sample obtained in 73% yield by refluxing <u>6c</u> with MeOH. - <u>Td</u>, mp. 174-5°C; IR (KBr): 3300 b, 1630, 805 cm⁻¹. Authentic sample obtained in 62% yield by reacting <u>6c</u> with aqu DMSO, <u>cf</u>. Ref.6.

<u>Sa+Sb</u>, unseparable mixture; IR (KBr): 1640, 800, 740, 695 cm⁻¹. MMR (CDCl₃): δ 7.4-6.8, m, 9H; 5.17, s, 1H; 3.75, s, sh at 3.78, 3H; 3.00, s, 6H. Refluxing with AcOH/HBr furnished 6% <u>12a</u> and 54% <u>13</u> which were separated by chromatography.¹⁴ - <u>Sc</u>, mp. 183-4°C (CHCl₃-light petroleum; or MeOH); IR (KBr): 1630, 890, 850, 790 cm⁻¹. NMR (CDCl₃): δ 7.25-6.7, m, 7H; 5.45, s, 1H; 3.77, s, 3H; 2.97, s, 6H. MS: <u>m/e</u> 339 (4.7%, i); 337 (7.1%, M); 267 (32%, i); 265 (47%, M-CONMe₂); 217 (1.5%, i); 215 (3.8%, 265-[³⁵Cl+Me]); 165 (7.1%); 152 (7.1%); 127 (19%, i); 125 (61%, C₆H₂ClO⁺); 72 (100%, CONMe₂). Refluxing with AcOH/HBr and chromatographic work-up furnished 54% of <u>12b</u>.

2, mp. 101-2^oC (aqu EtOH); IR (KBr): 1645, 815, sh at 830 cm⁻¹. NMR (CDCl₃): δ 7.5-7.1, m 6H; 6.75, d, J=10 Hz, 2H, high field d of MeOC₆H₄ group; 3.72, s, 3H; 3.28, s, 3H; 2.95, bs, 6H. MS: $\underline{m/e}$ 263 (36%, i); 261 (100%, M--conme₂); 141 (8.0%, i); 139 (27%, ${}^{35}\text{clc}_6\text{H}_4\text{co}$); 135 (29%, MeOC₆H₄co); 113 (2.8%, i); 111 (8.4%, ${}^{35}\text{clc}_6\text{H}_4$); 72 (11%, CONMe₂).

<u>loa</u>, mp. 135-6°C, lit.¹⁵ mp. 130°C; identical (IR, NMR) with an authentic sample.¹⁵ - <u>lob</u>, mp. 104-5°C (gasoline); IR (KBr): 1630, 790 cm⁻¹. NMR (CDCl₃): δ 7.5-7.0, m, 8H; 5.15, s, lH; 2.97, s, 3H. Authentic sample obtained in 79% yield by reacting di(<u>p</u>-chlorophenyl)acetic acid with SOCl₂ and Me₂NH.

 $\begin{array}{l} \underbrace{11}{12}, \text{ mp. 160-1}^{\text{O}\text{C}} \text{ (acetone-light petroleum); IR (KBr): 1645, 800 w, 755, } \\ 700 \ \text{cm}^{-1}. \ \text{MMR (CDCl}_3\text{): } & 7.3-7.05, \text{ m, 19H; 5.15, s, 1H; 2.95, s, 9H, three} \\ \underbrace{\text{N}-\text{Me}^{\text{s}}\text{s; 2.3, bs, 3H, one } \underline{\text{N}-\text{Me}}\text{ MS: } \underline{\text{m/e}} 476 (3.4\%, \text{C}_{32}\text{H}_{32}\text{N}_2\text{O}_2, \text{ M}\text{); 405 (25\%);} \\ 404 \ (73\%, \ \text{M-CONMe}_2\text{); 360 (0.54\%); 359 (1.7\%, 404-\text{Me}_2\text{NH}); 333 (5.4\%); 332 \\ (15\%, 404-\text{CONMe}_2\text{); 253 (4.2\%); 252 (3.1\%); 241 (5.4\%); 239 (3.1\%, \ \text{M}-237); 222 \\ (3.5\%); 165 \ (5.8\%, \ \text{C}_{13}\text{H}_9^+\text{); 72 (100\%, CONMe}_2\text{); metastables: 476 } \underbrace{-72}{404, 404 - \underbrace{45}{45}, 359, 404 - \underbrace{72}{332}, 404 - \underbrace{-332}{72}, 72. \end{array}$

<u>l2a</u>, mp. 112-3°C, lit.^{16a} mp. 113-4°C; IR (KBr): 1810, 760, 730, 700 (sh at 710 cm⁻¹). - <u>l2b</u>, mp. 121-2°C, lit.¹⁷ mp. 119-21°C; IR identical with that of an authentic sample. - <u>l3</u>, mp. 172-3°C, lit.^{16b} mp. 173°C; IR (KBr): 3500-2800, 1720, 820, 700 cm⁻¹. Authentic samples of <u>l2a</u>, <u>l2b</u> and <u>l3</u> were obtained as described in Ref's 16 and 17.

<u>Sa</u> and <u>Sb</u> are the first anomalous <u>o</u>-substitution products isolated from reactions of type <u>l</u> compounds with nucleophiles, and <u>9</u> is the first <u>mixed</u>" (α, \underline{p} -disubstituted) product resulting from such a reaction. The formation of the dimer <u>ll</u> suggests the intermediacy of the radicals <u>l4</u> which, in turn, suggests a radical-anion chain mechanism (<u>cf</u>. Ref's 18-20) for the formation of <u>ll</u> as well as of the type <u>8</u> anomalous products, the mixed product <u>9</u> and the reduction products <u>l0</u>. There are no indications yet as to whether the <u>mormal</u>" products <u>7</u>²¹ are the results of classical S_N² reactions of the halogenoamides <u>6</u> (as in a related case described in Ref. 20) or else are products of the same radical-anion chain reaction than the type <u>8-<u>ll</u> compounds (as in the cases described in Ref's 18-19).</u>

REFERENCES AND NOTES

1.	I. Lengyel and J.C. Sheehan, <u>Angew. Chem</u> . <u>80</u> , 27 (1968) with references to earlier literature
2.	S. Sarel, A. Taube and E. Breuer, Chem. and Ind. 1967, 1095
	a: K. Nagarajan, C.L. Kulkarni and A. Venkateswarlu, <u>Tetra. Letters</u> 1967,
	1387; b: K. Nagarajan and C.L. Kulkarni, <u>ibid</u> . 1968, 2717
4.	Gy. Simig, K. Lempert, J. Tamás and P. Miklós, <u>Tetra.Letters</u> 1975, 93
	K. Lempert, J. Puskás and Sz. Vezér, <u>Acta Chim. Acad. Sci. Hung. 67</u> ,
	369 (1971)
6.	Gy. Simig and K. Lempert, <u>Tetrahedron</u> <u>31</u> , 983 (1975)
	Gy. Simig, K. Lempert, J. Tamás and G. Czira, <u>Acta Chim. Budapest</u> <u>90</u> ,
	93 (1976)
8.	E. Breuer, T. Berger and S. Sarel, <u>Chem. Comm.</u> 1268, 1596
9.	Obtained by reacting diphenyl ketene with <u>N</u> -bromodimethylamine, or α, α -
	-diphenylacetyl chloride with Br ₂ and Me ₂ NH. Mp. 129 ^o C (gasoline).
10.	Obtained by reacting di(p-chlorophenyl)acetic acid successively with
	SOCl ₂ , Br ₂ and Me ₂ NH. Mp. 118-9°C (gasoline).
11.	All new compounds gave satisfactory microanalyses. NMR spectra were ob-
	tained at 60 MHz with a Perkin-Elmer R-12, mass spectra with an AEI
	MS-902 (70 eV, 150 [°] C, direct inlet).
	Yields of isolated products. Results of three runs.
	Chromatographic work-up. Yields of isolated products.
	Yields of recrystallized products.
15.	V.G. Gokhale, N.L. Phalnikar and B.V. Bhide, J. Unix Bombay 16, 32
	(1948); <u>Chem. Abstr.</u> <u>43</u> , 1144d (1949)
	A Bistrzycki and J. Flatau, a: <u>Ber</u> . <u>28</u> , 989 (1895); b: <u>Ber</u> . <u>30</u> , 124 (1897)
17.	V.D. Reif, J.E. Sinsheimer, J.C. Ward and D.E. Schteingast, J. Pharm. Sci.
	<u>1974</u> , 1734
	N. Kornblum, <u>Angew. Chem</u> . <u>87</u> , 797 (1975)
19.	J.K. Kim and J.F. Bunnett, <u>J. Amer. Chem. Soc</u> . <u>92</u> , 7463 (1970);
	J. F. Bunnett, <u>J. Chem. Educ</u> . <u>51</u> , 312 (1974)
20.	J.A. Zoltewicz, T.M. Oestreich and A.A. Sale, <u>J. Amer. Chem. Soc</u> . <u>27</u> ,
	5889 (1975)
21.	The low yields of the compounds $\underline{\underline{7}}\underline{b}$ and $\underline{\underline{7}}\underline{d}$ are consistent both with their
	formation by reaction of $\underline{6}\underline{e}$ and $\underline{6}\underline{c}$, respectively, with traces of water
	and/or OH^{Θ} ions present, and by demethylation of $\underline{7a}$ and $\underline{7c}$, respectively,
	by MeO ^e ions, <u>cf</u> . Ref. 20.